Overview of RCRA Corrective Action

Joel Hennessy
EPA Region 3
RCRA Inspectors Workshop
Rehoboth, DE
April 24 - 26, 2007

RCRA Corrective Action

- What is Corrective Action?
- Who is subject to RCRA Corrective Action?
- How is it implemented?
- What are the requirements?
- What are EPA's program goals?
- What are the Cleanup Goals for Facilities?
- How can we incorporate Reuse/Redevelopment?

What is RCRA Corrective Action?

- Taking action (interim measures, assessment, cleanup)...
- in response to a release (spilling, dumping, leaking, etc., including historical releases)...
- of hazardous waste or hazardous constituents (including product releases)...
- from a RCRA facility

RCRA Corrective Action

- Corrective action for Regulated Units
 - (base program)
- Corrective action for Solid Waste Management Units (SWMUs)
 - (HSWA corrective action)
- Site-wide corrective action
 - (incl. HSWA; § 7003 imminent & substantial endangerment; § 3013)
- Corrective action for Underground Storage Tanks

Region 3 Facilities

Subject to RCRA*

- 23,536 small quantity generators
- 2,959 large quantity generators

• 665 current & former treatment, storage, & disposal facilities (TSDs)

- Priority:
 - 347 high
 - 130 medium
 - 188 low
- Underground Storage Tanks
 - 73,526 active
 - 159,939 closed tanks
 - 40,673 confirmed release

How do we implement RCRA Corrective Action?

(Authorities/Mechanisms)

Other

- Voluntary actions
- Facility lead agreements
- State VCPs
- State orders
- CERCLA

Bottom line: use whatever works – mechanism is unimportant as long as the work gets done

Corrective Action requirements

- EPA has <u>not</u> promulgated comprehensive cleanup regulations under RCRA Subtitle C
- 40 CFR 264.100 (regulated units)
- 40 CFR 264.101 (SWMU)
- 40 CFR 264 Subpart S (special provisions for cleanup, e.g., CAMU, TU, Staging Piles
- Implemented primarily through guidance (including proposed rules)
- Approved work plans become enforceable under Permits & Orders

Corrective Action Guidance

- Groundwater Handbook
 - September 2001 (with updates in 2004)
- Federal Register Notices
 - 1996 Advance Notice of Proposed Rulemaking (ANPR)
 - 2003 Final Guidance on Completion
- Web resources
 - http://www.epa.gov/correctiveaction
 - http://www.epa.gov/reg3wcmd/ca/ca_re sources.htm

EPA Corrective Action Program Goals

achieving results in Region 3

- 2005 (284 High Priority facilities)
 - Human Exposures Under Control (99%)
 - Migration of Contaminated Groundwater Under Control (78%)
- 2008 (289 High Priority facilities)
 - Human Exposures Under Control at 95%
 - Migration of Contaminated Groundwater Under Control at 80%
 - Remedy Selected at 30%
 - Construction Complete at 20%
- 2020 (~611 facilities, High, Medium, & Low)
 - Human Exposures Under Control at 100%
 - Migration of Contaminated Groundwater Under Control at 100%
 - Construction complete at 100%

Corrective Action

achieving results at specific sites

Process

- Initial site assessment (RFA)
- Site characterization (RFI)
- Interim measures (IM)
- Evaluation of remedial alternatives (CMS)
- Remedy selection (SB/FDRTC)
- Remedy implementation (CMI)

Goals

- Short-term protection
- Intermediate performance
- Final cleanup

Site Characterization

Goals

- Define horizontal & vertical extent
- Characterize sources
- Identify actual & potential receptors
- Collect data to assist remedy selection

Approach

- Develop conceptual model
- Identify key decisions
- Establish Data Quality Objectives
- Develop sampling and analysis plan
- Collect & analyze data
- Assess data quality
- Make a decision

RCRA Short-Term Protection Goals

(Environmental Indicators)

• Ensure:

- Humans are not being exposed to unacceptable levels; and
- Contaminated groundwater is not migrating above levels of concern

RCRA Intermediate Performance Goals

- Demonstrate progress
- Facility specific
- EPA encourages intermediate goals to:
 - focus resources
 - improve environmental conditions
 - enhance performance of cleanups
- Consistent with phased approaches
- Examples: source control, off-site plumes

Final Cleanup Goals

- RCRA Three threshold criteria:
 - Protect human health and environment
 - Achieve "media cleanup objectives"
 - Control sources to the extent practicable

Remedy Selection

- Threshold Criteria
 - Protect Human Health & Environment
 - Achieve Media Cleanup Objectives
 - Control sources
- Balancing Criteria
 - Long-term reliability & effectiveness
 - Reduction of toxicity, mobility, or volume
 - Short-term effectiveness
 - Implementability
 - Cost
 - Community Acceptance
 - State Acceptance

Balancing Criteria

Media Cleanup Objectives

- Cleanup Levels
- Point of Compliance/Area of Attainment
- Cleanup Time Frame

what where when who why how

Cleanup Levels

- Risk-based
 - Risk range for carcinogens (10⁻⁶ to 10⁻⁴)
 - Hazard quotient ≤ 1 for non-carcinogens
- Default values
- Background

Risk Assessment

Purpose

 Identify and characterize current and future potential risks posed by the site

Components

- Identification of contaminants
- Assessment of exposure
- Assessment of toxicity

Sources of Information

Existing Standards

- Maximum Contaminant Levels (MCLs)
- Non-Zero Maximum Contaminant Level Goals (MCLGs)
- Water Quality Criteria

Media Cleanup Objectives

- Cleanup Levels
- Point of Compliance
- Cleanup Time Frame

Cleanup Levels

- Soil
 - Land use (residential, industrial)
- Groundwater
 - Maximum beneficial use
 - Groundwater use designations
 - Other exposure pathways (e.g., vapor intrusion)
 - Discharge to surface water
- Technical impracticability

Groundwater Cleanup Level

- EPA goal: Return usable groundwater to maximum beneficial use
- Within the range of reasonably expected uses and exposures, maximum beneficial use is the one which warrants the most stringent groundwater cleanup level

Groundwater Cleanup Level examples

- Groundwater nearby is used as drinking water supply:
 - Maximum beneficial use = drinking water
 - Cleanup level is MCL
- Groundwater nearby not currently used for drinking water, but is in a high yielding, low TDS aquifer:
 - Reasonable that it could be used as drinking water supply
 - Maximum beneficial use = drinking water
 - Cleanup level is MCL

Groundwater Cleanup Level examples, continued

- Groundwater is within an area designated by a government entity as not allowed for drinking water use:
 - Other uses are allowed (e.g., non contact cooling, car wash, etc.)
 - The range of reasonably expected uses is evaluated (e.g., see list)
 - Cleanup levels developed for each use
 - Maximum beneficial use is the one with the lowest cleanup level.

Groundwater Use Designations

- Based on use, value and vulnerability
 - State-wide system
- Examples of factors to consider:
 - Quantity, quality, and yield
 - Reasonably expected future use
- Other key messages:
 - Discourages current use as only factor
 - States can define use (e.g., CSGWPP, more stringent State Standards, etc.)
 - Many states designate all gw as drinking water

Media Cleanup Objectives

- Cleanup Levels
- Point of Compliance
- Cleanup Time Frame

Point of Compliance

- Where a facility should monitor and achieve facility-specific goals
- How much of the groundwater must be cleaned up?
 - Throughout the plume
 - Waste unit boundary if waste left in place
 - Boundary of TI zone

RCRA Point of Compliance

Based on Goal

RCRA Point of Compliance

Short-Term

RCRA Point of Compliance Final

RCRA Point of Compliance

RCRA Point of Compliance

Intermediate

RCRA Point of Compliance

Intermediate

Media Cleanup Objectives

- Cleanup Levels
- Point of Compliance
- Cleanup Time Frame

Cleanup Timeframe

- Facility-specific schedule for the groundwater remedy
 - Time to construct remedy
 - Estimate of time needed to achieve cleanup levels at the Point of Compliance/Area of Attainment
- Should be reasonable given facility-specific conditions
 - Longer timeframes may be acceptable where groundwater is not currently being used for drinking water
 - Shorter timeframes may be needed to control/prevent current or imminent exposure

Reuse/Redevelopment

- Integration with Corrective Action
- Before, during, after
- Considerations
- Parceling
- Types of reuse
- Timing
- Engineering & Institutional Controls

Reuse/Redevelopment

- Good reuse: Intermodal rail/trucking facility at former Bethlehem Steel facility, Bethlehem, PA
- Bad reuse: Kiddie Kollege daycare in former mercury thermometer factory, Franklin Township, NJ

Cleanup Technologies

- Removal
 - Excavate
 - Pump
 - Dredge
 - Vapor recovery
- Treatment
 - In situ
 - Ex situ
- Containment
 - Capping
 - Cut off walls

Monitored Natural Attenuation

- Cleanup approach relying on natural processes and monitoring
- MNA is likely candidate when:
 - Capable of achieving cleanup levels
 - Timeframe reasonable
 - Degradation is dominant process
 - Remedy includes source control
 - Plumes are already stable or shrinking
 - Used in conjunction with active approaches or as a follow-up measure
- Need for contingency remedy
- Trigger or criteria to signal if not working

Technical Impracticability (TI)

- Situations where achieving groundwater cleanup levels for a final remedy is not practicable from an "engineering perspective"
 - Needs to be technically justified
 - Presence of DNAPL = likely TI
 - Alternative remedial strategy
 - Point of Compliance applies outside TI zone
 - Can be revisited if cleanup becomes "technically practicable" in future

Corrective Measures Implementation

- Construction Completion
- Operation, Maintenance & Monitoring
- Financial Assurance
- Institutional Controls
- Remedy Completion
 - Complete with controls
 - Complete without controls

Case Studies

- Genicom Waynesboro, VA
- Allied/Honeywell Baltimore, MD
- Marjol Battery Throop, PA

Genicom Waynesboro, VA

- Electro-mechanical equipment manufacturing
 - GE 1954 1983
 - Genicom 1983 2000
- Light manufacturing, warehousing & distribution
 - Solutions Way Management 2001 to present
- TCE in groundwater
- Remedy: Groundwater pump & treat; closure (capping) of regulated surface impoundment

Allied/Honeywell Baltimore, MD

- Chrome ore processing from mid-19th century to 1985
- Hexavalent chromium in groundwater and adjacent surface water
- Remedy: Soil bentonite wall; cap; maintain inward hydraulic gradient

Marjol Battery Throop, PA

- Lead acid battery crushing, lead reclamation, on-site disposal of spent battery casings from 1962 to 1982
- Gould Electronics purchased site in 1980
- Lead in soil, adjacent community
- Remedy: offsite soil excavation; consolidate soils onsite under cap away from coal seams

Resources

• http://www.epa.gov/reg3wcmd/correctiveac tion.htm

